Jump to content

Lurker

Moderators
  • Content Count

    3,917
  • Joined

  • Last visited

  • Days Won

    267

Lurker last won the day on February 18

Lurker had the most liked content!

Community Reputation

2,034 Celebrity

About Lurker

  • Rank
    Associate Professor
  • Birthday 02/13/1983

Profile Information

  • Gender
    Male
  • Location
    INDONESIA
  • Interests
    GIS and Remote Sensing

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Klau Geomatics has released Real-Time Precise Point Positioning (PPP) for aerial mapping and drone positioning that enables 3 to 5 cm initial positioning accuracy, anywhere in the world, without any base station data or network corrections. With this, you Just need to fly your drone at any distance, anywhere. The system allows to navigate with real-time cm level positioning or geotag your mapping photos and Lidar data. You don’t need to think about setting up a base station, finding quality CORS data or setting up an RTK radio link. You don’t need to be in range of a CORS station, you can fly autonomously, in remote areas, long corridors, unlimited range, it just works, giving you centimetre level accuracy, anywhere. Now, with this latest satellite-based positioning technology, 3 to 5cm accuracy can be achieved, anywhere in the world, with no base station. KlauPPP leverages NovAtel’s industry-leading technology to achieve this quantum leap in PPP accuracy. NovAtel PPP and Klau Geomatics hardware/software system is now the simplest, most convenient and accurate positioning system for UAVs and manned aircraft. The bundled solution enables accurate positioning in any published or custom coordinate system and datum. This technology is very applicable to surveying, mapping, navigation and particularly the emerging drone inspection industry, starting to realize that absolute accuracy is essential to analyze change over time in 3D assets. A BVLOS parcel delivery drone can now travel across a country and arrive exactly on it’s landing pad. No range limitations, no base station requirements or radio links. Highly accurate autonomous flight. Large scale enterprise drone companies can deploy their fleet of operators with a simple, mechanical workflow to capture accurate, repeatable data, without the complications of the survey world; of RTK radio links and network connections or logging base station data within a range of each of their many projects. Now they have a simple consistent operation that just works, every time, every location. “Just as Klau Geomatics led the industry from RTK and GCPs to PPK, we now lead the charge to PPP as the next technology for simple, accurate drone operations”, says Rob Klau, Director of Klau Geomatics source : http://geomatics.com.au/
  2. The latest four Galileo satellites have been given the green light to begin working alongside the rest of Europe’s satellite navigation fleet, giving a further boost to worldwide Galileo service quality. Galileo has grown to become Europe’s single largest satellite constellation, built up over 10 launches over the course of this decade. The first of seven double-satellite Soyuz launches took place in 2011, with three sets of four-satellite Ariane-5 launches during the last three years. The latest quartet of Galileo satellites were launched together by Ariane 5 on July 25, bringing the number of satellites in orbit to 26. L-band antenna at Redu. (Photo: ESA) Once safely in orbit the satellites entered their in-orbit test commissioning, overseen by a combination of facilities across Europe. The Launch and Early Operations Phase team of France’s CNES space agency in Toulouse worked together with the two Galileo control centres in Fucino, Italy, and Oberpfaffenhofen, Germany and ESA’s Redu centre in Belgium. Redu’s 20-m antenna played an important part during in-orbit testing, allowing for high-resolution monitoring of the L-band navigation signal coming from each satellite. The two control centres participated by testing their control of the satellites. The operations teams confirmed their fully-trained status and their readiness to manage the fleet now it has swelled to 26 satellites in total. Galileo’s Control Centre in Fucino is used to oversee the satellites’ navigation payloads and services.(Photo: ESA) David Sanchez-Cabezudo, ESA’s Galileo In-Orbit Testing manager commented: “All the lessons learned and experience gained in these last years through the Galileo satellite commissioning campaigns have led us to a high level of efficiency and effectiveness — not only in managing the technical aspects of the testing operations but the large number of interfaces at contractual and human levels. A complex network of teams has had to work together to make this activity work.” Galileo satellites orbit in three orbital planes in medium Earth orbit, 23 222 km up. The result is that at least four Galileo satellites should be visible from any point on Earth — the minimum needed to achieve a position fix. Galileo’s Control Centre in Oberpfaffenhofen in Germany oversees the Galileo satellite platforms.(Photo: ESA) Oberpfaffenhofen Control Centre Galileo Initial Services commenced on Dec. 15, 2016, with each new addition to the working constellation serving to enhance the stability and speed of the system. A further 12 Galileo satellites are currently in production by the same industrial consortium — with OHB manufacturing the satellite platforms and Surrey Satellite Technology Ltd the navigation payloads. The next Galileo launch is schedule for 2020, the same year that Full Operational Capability is set to start. The Galileo programme is funded and owned by the EU. The European Commission has the overall responsibility for the programme, managing and overseeing the implementation of all programme activities. ESA is entrusted with Galileo’s deployment, the design and development of the new generation of systems and the technical development of infrastructure. The definition, development and in-orbit validation phases were carried out by ESA, and co‑funded by ESA and the European Commission. The European Global Navigation Satellite System Agency (GSA) ensures the uptake and security of Galileo. Galileo operations and provision of services became the responsibility of the GSA in July 2017. Galileo’s global ground segment. (Map: ESA)
  3. Airbus Defence and Space and Hisdesat Servicios Estratégicos, S.A. have generated the first joint TerraSAR-X / PAZ Radar Interferogram. This milestone demonstrates the missions’ capacity for cross-sensor interferometry, whose processing is among the most challenging. Interferograms are typically used to derive the topographic elevation and deformation of the Earth’s surface and are created using at least two different images acquired at a different date. This flattened Cross-Sensor-Interferogram has been created from a mixed image pair with 4 days temporal separation acquired by TerraSAR-X and PAZ (StripMap scenes from 22 and 26 November 2018). The area covers the oil and gas production site Burgan (Kuwait) and parts of the Persian Gulf. The oil field is the world largest sandstone oil field with a total surface area of about 1,000 km². As PAZ is positioned in the same orbit as TerraSAR-X and TanDEM-X and features exactly identical ground swaths and acquisition modes, they all three form a high-resolution SAR satellite constellation, jointly exploited by Hisdesat and Airbus. With the launch of PAZ, the observation repeat cycle has been divided by half, which improves the monitoring of fast ground deformation phenomena that can endanger lives and infrastructures. “This is a major step towards achieving the implementation of our TerraSAR-X / PAZ Radar Constellation. The level of accuracy obtained with this interferogram is a guarantee for our customers to continue to rely on the high-quality standard we have set with TerraSAR-X and TanDEM-X, but with an improved monitoring capacitiy” said Hanjo Kahabka, Head of Production and Radar Constellation Manager at Airbus Defence and Space, Intelligence. “In Hisdesat we are very proud of reaching this milestone. Interferometry is one of the most technically demanding applications and thanks to this successful joint exercise with Airbus we have not only demonstrated the top performance of our PAZ satellite but its full compatibility with TerraSAR-X and TanDEM-X. Now operation in the constellation can become a reality and we will be able to provide to our customers full set of images and services with the constellation.” said Miguel García Primo, Chief Operating Officer at Hisdesat. source: https://www.geospatialworld.net/news/airbus-hisdesat-first-terrasar-x-paz-radar-interferogram/
  4. see here : https://gis.stackexchange.com/questions/62624/questions-regarding-the-processing-of-mosaic-landsat-8 here the link that compare both method : http://www.faqs.org/faqs/sci/Satellite-Imagery-FAQ/part3/section-14.html some people prefer to mosaic first and then analysis like me, and some prefer analysis first and then mosaic you may read to see the differences and make a decision
  5. better you join/mosaic first, and then with all area already in one file, you can begin NDVI analysis Harrisgeospatial has nice tutorial bout this : https://www.harrisgeospatial.com/docs/NDVI.html njoy
  6. all software using for 3d mapping use waypoint method, and required your drone to fly autonomously related to the signal, that something you need to search for, maybe incompatibility with software, your phone or something others
  7. Lurker

    Windows Sandbox

    now we can ditch sandboxie, seems this feature will come in build 1903, finger crossed 😁 complete story: https://techcommunity.microsoft.com/t5/Windows-Kernel-Internals/Windows-Sandbox/ba-p/301849
  8. I think it is easier if you just georeference your images and then mosaic it. for pixel based mosaic, see this page: http://facegis.nuarsa.info/?id=283 or if you already install ENVI, just click on HELP button in the pixel based mosaic windows
  9. actually, it is easier than aerial videography if you are using mission planner for the drone, you lift up your drone and automatic piloting and photography will take the rest. but first, of course, you need compatible software for mission planner to DJI Inspire 2, and by quick search seems drone deploy will do the job. for my experience, our office use Mission planner software with custom drone that compatible with Ardupilot , this platform completely open source just set the waypoint and overlap/sidelap each picture, then you a ready to go. for best result, you may need GPS Geodetic to fix the position,
  10. remote sensing product with high detection in minerals and geochemical things but maybe for the specific product, it depends on your requirement like for example the area you want to explore, etc... http://www.academia.edu/15567378/Satellite_remote_sensing_for_hydrocarbon_exploration_in_new_venture_areas
  11. Lurker

    NDVI and LST

    maybe you can apply a statistical test to your both index there is a tool in IDRISI called CORRELATE you may try it
  12. I found some interesting video related to bad lines
  13. The U.N.-backed project, called Seabed 2030, is urging countries and companies to pool data to create a map of the entire ocean floor by 2030 which will be freely available to all. “We obviously need a lot of cooperation from different parties – individuals as well as private companies,” said Mao Hasebe, project coordinator at the Nippon Foundation, a Japanese philanthropic organization supporting the initiative. The project, which launched in 2017, is expected to cost about $3 billion. It is a collaboration between the Nippon Foundation and GEBCO, a non-profit association of experts, which is already involved in charting the ocean floor. The end result would be greater knowledge of the oceans’ biodiversity, improved understanding of the climate, advanced warning of impending disasters, and the ability to better protect or exploit deep-sea resources, said Hasebe. High tech sonar technology will be put into use to map the whole ocean floor. “With advanced sonar technology it really is like seeing. I think we’ve come out of the era of being the blind man with the stick,” said Robert Larter, a marine geophysicist at the British Antarctic Survey. “We can survey much more efficiently – and, not only that, but in much greater detail,” he further added. source: https://www.geospatialworld.net/news/the-un-backed-seabed-project-aims-to-create-entire-ocean-map-by-2030-to-explore-deep-sea-resources/
×

Important Information

By using this site, you agree to our Terms of Use.