Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 06/12/2020 in all areas

  1. 2 points
    Hi Everyone, July 13–16, 2020 | The world’s largest, virtual GIS event (FREE this year) The 2020 Esri User Conference (Esri UC) is a completely virtual event designed to give users and students an interactive, online experience with Esri and the GIS community. Participate in sessions and view presentations that offer geospatial solutions, browse the online Map Gallery, watch the Plenary Session, and much more. Registration here : https://www.esri.com/en-us/about/events/uc/overview Enjoy
  2. 2 points
    the satellites from planet can now take imagery at 50cm, they changed their orbit in order to achieve better GSD SKYSAT IMAGERY NOW AVAILABLE Bring agility to your organization with the latest advancements in high-resolution SkySat imagery, available today. Make targeted decisions in ever-changing operational contexts with improved 50 cm spatial resolution and more transparency in the ordering process with the new Tasking Dashboard.
  3. 1 point
    The big news in the geospatial world at the moment is Facebook’s acquisition of Mapillary. For those unfamiliar, Mapillary is a darling of the mapping world and one of the highest-profile geospatial startups of the last decade—launched in 2013, their mission was to create a global street-level imagery dataset to rival Google Street View. Mapillary was the prototypical “venture-scale” business — preposterously ambitious, technically impressive, inarguably valuable for the world, and plausibly monetizable. What Mapillary accomplished in a short seven years is simply staggering. Google, with an enormous head start and untold resources at the ready to support Street View announced last year that they’ve collected over ten million miles of street imagery. Mapillary, on the other hand, crossed three million miles of mapped streets in 2018 and has more than doubled the number of images in their catalog in the years since (to over one billion!), putting them squarely in the same conversation as Google. That’s an insane accomplishment for any company, let alone a startup who, over its lifetime, raised ~$25M or about half of the annual compensation package for a typical member of Google’s C-Suite. In addition, they’ve created some stuff I deeply admire as a member of the broader open source geospatial community. Two quick examples: OpenSfM, a popular computer vision engine for stitching together overlapping images to reconstruct places in 3D. Vista, a free 25K image dataset labeled for semantic segmentation — one of the largest such open datasets in existence. What is Facebook Up To, Exactly? If you predicted Facebook would acquire Mapillary, congratulations — you are probably alone. Apart from a public image that stands in cartoonish opposition to Mapillary’s ethos of grassroots community building and radical openness, Facebook doesn’t really do maps, do they? Google, Apple, and Microsoft have invested billions into consumer mapping applications and acquired numerous companies to support those efforts. Any of those three behemoths would have felt like natural landing spots for Mapillary. But Facebook? What’s that about? Unless you are already tapped into the seedy underworld known as the “geospatial industry,” you can be forgiven for not knowing that Facebook actually does do maps. In this incredible paper¹ released j̶u̶s̶t̶ ̶l̶a̶s̶t̶ ̶m̶o̶n̶t̶h̶ just over a year ago², researchers found that Facebook has contributed over 800,000 kilometers of mapped roads to OpenStreetMap (if you’re unfamiliar, it’s one of the largest crowdsourcing projects in history). They rank third in kilometers mapped behind Mapbox/Development Seed (1.69M) and Apple (1.64M). And beyond directly contributing cartographic features to OSM, they’ve publicly released an open source, AI-assisted road mapping tool called RapID that is an impressive thing to witness in action. They also support the OSM Foundation at the highest corporate giving level and have had a formidable presence at the annual OSM conference the past few years. Still — the mere fact Facebook has dipped its gargantuan toes into the mappy water doesn’t explain why they would bother with acquiring Mapillary. complete story: https://medium.com/@joemorrison/why-on-earth-did-facebook-just-acquire-mapillary-9838405272f8
  4. 1 point
    The United States Space Force’s GPS III program reached another milestone with the successful core mate of GPS III Space Vehicle 08 at Lockheed Martin’s GPS III Processing Facility in Waterton, Colorado, April 15. With core mate complete, the space vehicle was named in honor of NASA trailblazer and “hidden figure” Katherine Johnson. The two-day core mate consisted of using a 10-ton crane to lift and complete a 90-degree rotation of the satellite’s system module, and then slowly lowering the system module onto the satellite’s vertical propulsion core. The two mated major subsystems come together to form an assembled GPS III space vehicle. Despite the COVID-19 pandemic, the Space and Missile Systems Center (SMC) and its mission partner Lockheed Martin ensured that SV08 core mate took place, in accordance with all Centers for Disease Control and local guidelines to minimize exposure or transmission of COVID-19. The GPS III Processing Facility’s cleanroom high bay was restricted to only key personnel directly supporting the operation. “Core mate is the most critical of the GPS space vehicle single-line-flow operations,” said Lt. Col. Margaret Sullivan, program manager and materiel lead for the GPS III program. “Despite the restrictions presented by the COVID-19 pandemic, our team adapted and worked tirelessly to achieve this essential milestone.” Katherine Johnson. When the core mate operation is successfully completed, a GPS III satellite is said to be “born.” In keeping with the team’s tradition of naming GPS III satellites after famous explorers and pioneers, SV08 was named “Katherine Johnson” in honor of the trailblazing NASA mathematician and “human computer” who designed and computed orbital trajectories for NASA’s Mercury, Apollo and space shuttle missions. One of four African-American women at the center of the nonfiction book by Margot Lee Shetterly and the movie Hidden Figures, Johnson was awarded the Presidential Medal of Freedom in 2015 for her groundbreaking contributions to the U.S. space program. Other GPS III satellites have been named in honor of explorers including GPS III SV01 “Vespucci” after Amerigo Vespucci; GPS III SV02 “Magellan” after Ferdinand Magellan; and GPS III SV03 “Columbus” after Christopher Columbus. Next up, performance tests. The next step for the newly christened “Katherine Johnson” is the post-mate Systems Performance Test (SPT) scheduled to begin in August. SPT electrically tests the performance of the satellite during the early phase of build and provides a baseline test data set to be compared to post-environmental test data. GPS III SV08 is currently scheduled to launch in 2022. GPS III is the most powerful GPS satellite ever developed. It is three times more accurate and provides up to eight times improved anti-jamming capability over previous GPS satellites on orbit. GPS III brings new capabilities to users as a fourth civilian signal (L1C), designed to enable interoperability between GPS and international satellite navigation systems, such as Europe’s Galileo system. GPS III satellites will also bring the full capability of the Military Code (M-code) signal, increasing anti-jam resiliency in support of the warfighter. These continued improvements and advancements to the GPS system makes it the premier space-based provider of positioning, navigation, and timing services for more than four billion worldwide. GPS III SV03 to Launch June 30. Launched in December 2018 and August 2019, GPS III SV01 and SV02 became part of today’s operational constellation of 31 satellites, on January 13 and April 1, 2020 respectively. GPS III SV03 is scheduled to launch on June 30. The SMC, located at the Los Angeles Air Force Base, California, is the center of excellence for acquiring and developing military space systems. Its portfolio includes the GPS, military satellite communications, defense meteorological satellites, space launch and range systems, satellite control networks, space based infrared systems, and space situational awareness capabilities. source: https://www.gpsworld.com/gps-iii-sv-08-born-with-core-mate-complete-named-katherine-johnson/
  5. 1 point
    Researchers have developed an algorithm that can distinguish between volcanic and non–volcanic clouds using high-resolution satellite imagery. Called the Cloud Growth Anomaly (CGA) technique, the algorithm uses geostationary satellite data to detect fast growing vertical clouds caused by volcanic output. Volcanic ash produced by eruptions are a major threat to airplanes. In 2011, for example, Grímsvötn erupted, closing Iceland’s air space. Volcanic ash can cause significant damage to airplanes including in-flight engine failure. Researchers noted that “volcanic clouds produced by explosive eruptions can reach jet aircraft cruising altitudes in as little as 5 minutes.” Ten or more eruptions occur each year with a plume reach at or above jet cruising altitudes. Despite this threat, the authors of this study further note that “90% of the world’s volcanoes are not regularly monitored for activity.” Geostationary weather satellites such as Himawari-8 and the GOES East and West satellites provide high resolution data that can be used to detect ash plumes. Currently, Volcanic Ash Advisory Centers (VAACs) tend to manually analyze satellite imagery due to limitations with discerning ash plumes from meteorological clouds using multispectral infrared-based techniques. In this latest study, the CGA technique uses infrared measurements on satellite imagery “to identify cloud objects and compute cloud vertical growth rates from two successive images” produced within 60 minutes of each other. The CGA method was applied to 79 different explosive volcanic events from 30 volcanoes between 2002 and 2017. The success rate of the CGA in correctly identifying ash clouds varied depending on whether it was applied to the latest generations weather satellites. On older satellites, the accuracy rate was about 55%. For new generation satellites such as Himawari-8, the accuracy rate rose to 90%. source: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018EA000410


×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.