Jump to content
  • Chatbox

    You don't have permission to chat.
    Load More

    NASADEM: Creating a New NASA Digital Elevation Model and Associated Products

    Lurker
    By Lurker,
    Our objective is to provide the scientific and civil communities with a state-of-the-art global digital elevation model (DEM) derived from a combination of Shuttle Radar Topography Mission (SRTM) processing improvements, elevation control, void-filling and merging with data unavailable at the time of the original SRTM production: NASA SRTM DEMs created with processing improvements at full resolution NASA's Ice, Cloud,and land Elevation Satellite (ICESat)/Geoscience Laser Altimeter

    Veripos release LD900 quad-band GNSS receiver for marine

    Lurker
    By Lurker,
    Veripos has released the LD900, a quad-band GNSS receiver capable of tracking GPS, GLONASS, BeiDou, Galileo and QZSS constellations to provide reliable and accurate positioning. Access to multiple GNSS signals allow for better satellite availability and reduce the impact of satellite masking or blockage, which can affect positioning. LD900 also receives L-band signals on multiple channels, providing access to the worldwide independent correction links and services provided by Veripos. With

    Rocket Lab acquires Sinclair Interplanetary

    Lurker
    By Lurker,
    The US firm and its New Zealand subsidiary is the maker of the Electron launch vehicle and Photon line of primarily Low Earth Orbit satellites, which the acquisition of Sinclair’s capabilities will significantly bolster. The move appears to be a major plank in Rocket Lab’s strategy to provide end-to-end launch and small satellite services, according to Peter Beck, Rocket Lab founder and CEO. “When we talk to small satellite operators across the board their challenges are clear: They ne

    New UAVOS parachute system for UAS

    Lurker
    By Lurker,
    UAVOS has successfully tested its new two-stage parachute system. The new parachute system provides slow descent of a UAS at high speed. It includes two parachutes — the pilot chute and a main chute used to slow and stabilize the UAS. The decrease in the load speed on the UAS occurs due to the main chute opening delay function, when the pilot chute opens first. The parachute system is designed for UAS with speeds of up to 280 mph (450 kph) and weight of up to 110 lb (50 kg). Watch the

    SPH Engineering announces bathymetric drone solution

    Lurker
    By Lurker,
    SPH Engineering has launched a new product to make bathymetric surveys of inland and coastal water. The system — an unmanned aerial vehicle (UAV) integrated with an echo sounder — is time- and cost-efficient. It is suitable for mapping, measuring and inspecting tasks as well as environmental monitoring. The system allows field workers to collect data with high accuracy quickly. It is easily transported, quickly deployed and twice as cost-efficient as traditional methods. The UAV/e

Portal by DevFuse · Based on IP.Board Portal by IPS
  • Forum Statistics

    8.6k
    Total Topics
    43.2k
    Total Posts
  • Latest Posts

    • The European Space Agency (ESA) has greenlit the development of the NanoMagSat constellation, marking a significant advancement in the use of small satellites for scientific missions. NanoMagSat, a flagship mission spearheaded by Open Cosmos together with IPGP (Université Paris Cité, Institut de physique du globe de Paris, CNRS) and CEA-Léti, aims to revolutionise our understanding of Earth's magnetic field and ionospheric environment. As a follow on from ESA's successful Earth Explorer Swarm mission, NanoMagSat will use a constellation of three 16U satellites equipped with state-of-the-art instruments to monitor magnetic fields and ionospheric phenomena. This mission is joining the Scout family, a programme from ESA to deliver scientific small satellite missions within a budget of less than €35 million. The decision to proceed with NanoMagSat follows the successful completion of Risk Retirement Activities including the development of a 3m-long deployable boom and a satellite platform with exceptional magnetic cleanliness, key to ensuring state-of-the art magnetic accuracy. ESA’s Director of Earth Observation Programmes, Simonetta Cheli, said of this news: “We are very pleased to add two new Scouts to our Earth observation mission portfolio. These small science missions perfectly complement our more traditional existing and future Earth Explorer missions, and will bring exciting benefits to Earth.”
    • Introduction  The real estate industry encompasses a broad range of activities related to the buying, selling, renting, and development of properties. This may include land, residential, commercial, and industrial buildings. It is therefore a significant industry that plays a crucial role in both the economy and society. It comprises key stakeholders like real estate developers, agents, brokers, investors, property managers, and construction companies, all working together to meet the diverse needs of property owners. The real estate industry has long relied on location as a critical factor in property evaluation and investment decisions. This is not surprising considering that location is one of the most critical factors influencing the value and demand of a property. It’s therefore not uncommon within the real estate industry to come across the phrase “location, location, location”. But how do real estate planners and developers scout locations? After all, the world is too big a place to travel in every ideal place. This is where GIS comes in. So what exactly is GIS and how is it revolutionizing the real estate industry? Find that out in this guide. Understanding GIS Geographic Information Systems (GIS) is a powerful technology that deals with capturing, analyzing, storing, and managing geographical or spatial data. They allow users to visualize, interpret, and understand patterns and relationships in the geographic context. GIS integrates various data sources such as maps, satellite imagery, and aerial photographs to create intelligent and interactive visualizations. It is a mapping and spatial analysis tool. Because of its mapping and spatial capabilities and with real estate interlinked with location analysis, GIS is proving to be invaluable for real estate. It has unlocked a treasure trove of spatial data and analytical tools that enable real estate professionals to make data-driven decisions and streamline operations. How GIS is Revolutionizing the Real Estate Industry 1. It Aids Market Analysis with Precision For the most part, real estate is an investment. Like all investments, an analysis of the market is crucial. Information such as location, demographic analysis, and access to infrastructure is critical in making a buying decision. Crucially, GIS can provide this information. By overlaying multiple layers of spatial data including property values, demographics, and amenities, stakeholders can gain a comprehensive understanding of market trends and identify emerging opportunities. This spatial analysis allows investors to make informed decisions based on accurate data rather than relying solely on intuition. This information not only benefit property buyers but also developers   2. GIS Enables Smart Property Search When you think about property search, an image of moving around built-up areas comes to mind. While this is ubiquitous with property searches, it is time-consuming and cumbersome. Luckily, GIS redefines the way search is conducted. The traditional way of searching for properties has been replaced by GIS-powered property search platforms. Potential buyers can now explore properties based on specific location preferences, such as proximity to schools or public transport. Additionally, it allows real estate agents to provide interactive and visually engaging property maps. This therefore offers potential buyers a better understanding of the neighbourhood and its amenities.   3. Urban Planning and Smart Cities GIS plays a pivotal role in urban planning and development, promoting the concept of smart cities. By integrating GIS data with urban infrastructure, key stakeholders can optimize land usage, design sustainable neighborhoods, and develop efficient transportation networks. Therefore, this integration fosters sustainable urban spaces that cater to the needs of residents and businesses alike.   4. GIS Aids Risk Assessment and Mitigation Understanding and mitigating risks is paramount in real estate investments. This is ultimately crucial when making a buying decision. It’s therefore crucial that real estate investors and developers have the requisite tools to help them evaluate their risk appetites. GIS technology allows real estate professionals to assess potential hazards and environmental risks related to a property’s location. This includes flood zones, wildfire-prone areas, and seismic risks. Armed with this knowledge, investors can make better-informed decisions and implement necessary risk mitigation measures.   5. It Enhances Property Valuation GIS offers a data-centric approach to property valuation, moving beyond basic comparisons of similar properties in the vicinity. By factoring in various spatial data points such as crime rates and proximity to essential services, real estate professionals can provide more accurate and fair property valuations. This transparency therefore instils confidence in stakeholders, thereby leading to more successful transactions. 6. GIS Promotes Sustainability Worldwide, sustainability has become a core element of business operations. Real estate is not any different. As sustainability becomes a focal point in real estate development, GIS is instrumental in identifying environmentally sensitive areas and optimizing green building initiatives. It can determine the best locations for renewable energy projects and monitor the ecological impact of real estate projects. These insights can help key decision-makers implement sustainable practices that benefit both the environment and the industry.   7. It Improves Property Management GIS streamlines property management operations by providing valuable insights into tenant demographics, maintenance schedules, and occupancy patterns. The insights from this data can help real estate managers optimize maintenance routines and identify tenant preferences. This therefore leads to increased tenant satisfaction and better asset management. Key Take-Aways Geographic Information Systems (GIS) have revolutionized the real estate industry by providing an unprecedented level of spatial intelligence. From market analysis and smart property search to risk assessment and sustainable development, they have become an indispensable tool for real estate professionals looking to make data-driven decisions. As technology continues to evolve, it is expected to play an even more significant role in reshaping the future of the real estate sector. Embracing GIS is no longer an option but a necessity for real estate professionals aiming to stay competitive, innovate, and provide exceptional services in the dynamic landscape of the real estate industry. How to Harness the Power of GIS With IRES Are you involved in real estate and looking to stay ahead in a rapidly changing industry? Indepth Research Institute (IRES) is committed to empowering real estate practitioners like you with the knowledge and tools necessary to thrive in today’s dynamic property landscape. Our comprehensive upskilling programs on GIS are designed specifically to help real estate practitioners harness the power of GIS for effective and efficient property development and management. Don’t let the rapidly changing real estate landscape leave you behind. Register and be the best version of yourself! The Source of this Document:GIS and Remote Sensing Short Courses  
    • Leica Geosystems, part of Hexagon, introduces the Leica TerrainMapper-3 airborne LiDAR sensor, featuring new scan pattern configurability to support the widest variety of applications and requirements in a single system.  Building upon Leica Geosystems’ legacy of LiDAR efficiency, the TerrainMapper-3 provides three scan patterns for superior productivity and to customise the sensor’s performance to specific applications. Circle scan patterns enhance 3D modelling of urban areas or steep terrains, while ellipse scan patterns optimise data capture for more traditional mapping applications. Skew ellipse scan patterns improve point density for infrastructures and corridor mapping applications.       The sensor’s higher scan speed rate allows customers to fly the aircraft faster while maintaining the highest data quality, and the 60-degrees adjustable field of view maximises data collection with fewer flight lines. The TerrainMapper-3 is further complemented by the Leica MFC150 4-band camera, operating with the same 60-degree field of view coverage as the LiDAR for exact data consistency. Thanks to reduced beam divergence, the TerrainMapper-3 provides improved planimetric accuracy, while new MPiA (Multiple Pulses in Air) handling guarantees more consistent data acquisition, even in steep terrain, providing users with unparalleled reliability and precision. The new system introduces possibilities for real-time full waveform recording at maximum pulse rate, opening new opportunities for advanced and automated point classification.  The TerrainMapper-3 seamlessly integrates with Leica HxMap end-to-end processing workflow, supporting users from mission planning to product generation to extract the greatest value from the collected data.
    • How Upskilling in GIS Aids Educational Policy Research Understanding the distribution of student demographics is crucial for making informed decisions. This is where Geographic Information Systems (GIS) and remote sensing technologies play a vital role. By upskilling in GIS, researchers can harness the power of spatial analysis and mapping to gain valuable insights into student populations and educational disparities. GIS is a powerful tool that allows researchers to visualize, analyze, and interpret data in a spatial context. By integrating demographic data with geographic information, researchers can create detailed maps that highlight patterns and trends in student populations. Mapping student demographics enables policymakers and educators to identify areas with high concentrations of specific demographic groups, such as low-income students, English language learners, or students with disabilities. This information can inform targeted interventions and resource allocation to address educational inequities. Remote sensing, on the other hand, involves the collection of data from a distance, typically using satellite imagery or aerial photography. This technology provides researchers with a wealth of information about the physical characteristics of an area, such as land cover, vegetation density, and infrastructure. By combining remote sensing data with demographic information, researchers can gain insights into the relationship between the physical environment and educational outcomes. For example, they can examine how proximity to green spaces or access to transportation infrastructure affects student performance and attendance. Furthermore, GIS and remote sensing can help researchers analyze the spatial distribution of educational resources and facilities. By mapping school locations, transportation routes, and student residences, researchers can identify areas that lack access to quality education or suffer from transportation barriers. This information can guide the development of policies that promote educational equity and improve school planning. To effectively utilize GIS and remote sensing in educational policy research, upskilling is essential. Researchers should acquire proficiency in GIS software, such as ArcGIS or QGIS, to manipulate and analyze spatial data. They should also learn how to integrate remote sensing data into their analyses, using tools like Google Earth Engine or ENVI. Additionally, understanding spatial statistics and geospatial modeling techniques can enhance the depth and accuracy of research findings. In conclusion, upskilling in GIS and remote sensing offers significant benefits to educational policy research, particularly in mapping student demographics. By leveraging these technologies, researchers can gain valuable insights into the spatial distribution of student populations, educational disparities, and the impact of the physical environment on educational outcomes. With this information, policymakers and educators can make evidence-based decisions to promote educational equity and improve the quality of education for all students.
  • Latest Topics

  • Recent Achievements

    • giseye66 earned a badge
      Week One Done
    • giseye66 earned a badge
      One Month Later
    • giseye66 earned a badge
      One Year In
    • forestal2015 earned a badge
      Week One Done
    • forestal2015 earned a badge
      One Month Later
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.

Disable-Adblock.png

 

If you enjoy our contents, support us by Disable ads Blocker or add GIS-area to your ads blocker whitelist