Jump to content
  • Chatbox

    You don't have permission to chat.
    Load More

    Sea-level rise in 20th century was fastest in 2,000 years along much of East Coast

    Lurker
    By Lurker,
    The rate of sea-level rise in the 20th century along much of the U.S. Atlantic coast was the fastest in 2,000 years, and southern New Jersey had the fastest rates, according to a Rutgers-led study. The global rise in sea-level from melting ice and warming oceans from 1900 to 2000 led to a rate that's more than twice the average for the years 0 to 1800—the most significant change, according to the study in the journal Nature Communications. The study for the first time looked at the phe

    Drill down on map

    Mujda
    By Mujda,
    Hi, i'm looking for sample of script with Arcpy. For example, i have three hierarchy levels are country, state and district. These fields are geographic fields and I am able to plot them on three separate maps. The requirement is to create a top-down analysis such that when the user clicks on the country, the top-down analysis should take the user to the states and display all the states. Then when the user clicks on a state, the drilldown should bring the user to see the districts and show

    High end of climate sensitivity in new climate models seen as less plausible

    Lurker
    By Lurker,
    A recent analysis of the latest generation of climate models — known as a CMIP6 — provides a cautionary tale on interpreting climate simulations as scientists develop more sensitive and sophisticated projections of how the Earth will respond to increasing levels of carbon dioxide in the atmosphere. Researchers at Princeton University and the University of Miami reported that newer models with a high “climate sensitivity” — meaning they predict much greater global warming from the same level

    PSLV-C51/Amazonia-1 mission successful, Isro places 19 satellites in orbits

    Lurker
    By Lurker,
    The Indian Space Research Organisation opened its space calendar 2021 with the successful launch of PSLV-C51 carrying Amazonia-1 and 18 other satellites on Sunday. PSLV-C51 carrying Amazonia-1, an optical earth observation satellite from Brazil, and 18 other satellites lifted off from the first launch pad at Satish Dhawan Space Centre in Sriharikota at 10.24am. Around 17 minutes after lift-off and one minute after the PS4 engine cut-off, PSLV placed its primary payload -- 637kg weighing Amazon

    Saharan Dust Heading for Europe

    Lurker
    By Lurker,
    February 18, 2021   Each year more than 180 million tons of dust blow out from North Africa, lofted out of the Sahara Desert by strong seasonal winds. Perhaps most familiar are the huge, showy plumes that advance across the tropical Atlantic Ocean toward the Americas. But the dust goes elsewhere, too—settling back down in other parts of Africa or drifting north toward Europe. A dramatic display of airborne dust particles (above) was observed on February 18, 2021, by the Visible In

Portal by DevFuse · Based on IP.Board Portal by IPS
  • Forum Statistics

    7,733
    Total Topics
    41,519
    Total Posts
  • Topics

  • Posts

    • Minitab 20.3 (x64) Multilingual-P2P     Predict. Visualize, analyze and harness the power of your data to solve your toughest challenges and eliminate mistakes before they happen. Data is everywhere these days, but are you truly taking advantage of yours? Minitab Statistical Software can look at current and past data to find trends and predict patterns, uncover hidden relationships between variables, visualize data interactions and identify important factors to answer even the most challenging of questions. Visualizations are good, but pair them with analytics to make them great. With the power of statistics and data analysis on your side, the possibilities are endless. Release Names: Minitab 20.3 (x64) Multilingual-P2P Size: 246 MB download: https://nitro.download/view/F8EACCD14EACFA1/Minitab_20.3.rar https://rapidgator.net/file/7d90f2f395d37852cf5eb61110c0f55f/Minitab_20.3.rar.html https://ddownload.com/97sim5y5tnut/Minitab_20.3.rar https://drop.download/alaf9vxffkcq https://down.mdiaload.com/yp8ulnvvos34 https://clicknupload.co/zv08ylg7r6w6  
    • Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Handbook of Regression Modeling in People Analytics; With Examples in R and Python-P2P English | ISBN-10 :  ‏  1032041749 | PDF | 272 pages | 13 MB download: https://userupload.net/g9kw60jq47rx https://userupload.net/gzxxrgfkx1ff https://hexupload.net/hb6d9u3rl6x9 https://mega4up.com/z8se0opujste https://drop.download/mwxkjfwn86i8 https://dailyuploads.net/n59339gq801i  
    • Dear tnhgm, Can you please share installers so that developers can make license thx Stuart
    • Geologic activity on Earth appears to follow a 27.5-million-year cycle, giving the planet a 'pulse,' according to a new study published in the journal Geoscience Frontiers. "Many geologists believe that geological events are random over time. But our study provides statistical evidence for a common cycle, suggesting that these geologic events are correlated and not random," said Michael Rampino, a geologist and professor in New York University's Department of Biology, as well as the study's lead author. Over the past five decades, researchers have proposed cycles of major geological events—including volcanic activity and mass extinctions on land and sea—ranging from roughly 26 to 36 million years. But early work on these correlations in the geological record was hampered by limitations in the age-dating of geologic events, which prevented scientists from conducting quantitative investigations. However, there have been significant improvements in radio-isotopic dating techniques and changes in the geologic timescale, leading to new data on the timing of past events. Using the latest age-dating data available, Rampino and his colleagues compiled updated records of major geological events over the last 260 million years and conducted new analyses. The team analyzed the ages of 89 well-dated major geological events of the last 260 million years. These events include marine and land extinctions, major volcanic outpourings of lava called flood-basalt eruptions, events when oceans were depleted of oxygen, sea-level fluctuations, and changes or reorganization in the Earth's tectonic plates. They found that these global geologic events are generally clustered at 10 different timepoints over the 260 million years, grouped in peaks or pulses of roughly 27.5 million years apart. The most recent cluster of geological events was approximately 7 million years ago, suggesting that the next pulse of major geological activity is more than 20 million years in the future. The researchers posit that these pulses may be a function of cycles of activity in the Earth's interior—geophysical processes related to the dynamics of plate tectonics and climate. However, similar cycles in the Earth's orbit in space might also be pacing these events. "Whatever the origins of these cyclical episodes, our findings support the case for a largely periodic, coordinated, and intermittently catastrophic geologic record, which is a departure from the views held by many geologists," explained Rampino.   source: http://dx.doi.org/10.1016/j.gsf.2021.101245
    • On December 9, 2019, a cloud of steam and volcanic gases blasted out of New Zealand’s Whakaari, or White Island, volcano. Relative to eruptions at other volcanoes, the explosion was small. But it claimed the lives of 22 people and injured another 25, many of whom suffered severe burns. Now, using high-resolution satellite data and computer algorithms, scientists have revealed how gases released by the volcano subtly changed before, during and after the 2019 eruption. Observing such small changes using satellites could greatly improve volcano monitoring and help spot early warnings of eruptions, the researchers report June 18 in Science Advances. Volcanologists typically use instruments on the ground to help warn of eruptions, monitoring changes in gases, such as carbon dioxide and sulfur dioxide, that quietly seep from volcanoes between blasts. But only around 50 of the world’s volcanoes are monitored in this way. Satellites have been used to study the plumes of large volcanoes, but the orbiting crafts haven’t been used to detect gases emitted by small eruptions. Compared with large eruptions, like the blast that decapitated Washington’s Mount St. Helens in 1980, small-scale eruptions occur more often. So they pose a greater threat to people, says volcanologist Mike Burton of the University of Manchester in England. By chance, the Sentinel-5 Precursor satellite flew over Whakaari about an hour after the 2019 eruption and collected data on light reflected from the volcano’s plume of ejected gases with its Tropospheric Monitoring Instrument, or TROPOMI. “What we realized was that we could use [satellites] to actually look at unprecedentedly small explosions,” Burton says. From its seat in the sky, TROPOMI was better suited than ground instruments to gather information about the high-rising plume. And by the time TROPOMI passed overhead, much of the ash and other airborne particles that can blur ground observations of erupted gases had fallen out or evaporated from the plume. Burton and his colleagues applied a computer algorithm to the TROPOMI data to calculate the backward trajectory of gases in the plume — essentially rewinding the volcanic eruption. This approach allowed the researchers to estimate how much sulfur dioxide that the volcano belched before, during and after the eruption. Roughly 40 minutes before Whakaari erupted, the volcano’s sulfur dioxide emissions increased from 10 kilograms per second to 45 kilograms per second — signaling a potential eruption — and the plume of sulfur dioxide and other gases began to rise, the researchers found. GeoNet, a New Zealand geological hazard monitoring service, had raised an alert several weeks before the eruption, after detecting an uptick of ground tremor, geysers bubbling up in the volcano’s crater lake and sulfur dioxide emissions using ground instruments, though tour companies continued to visit the island. But the new study is the first time that scientists have used a satellite to detect precursory changes in sulfur dioxide emissions before a small eruption. It was surprising that so much information about this small eruption could be gleaned using satellites, Burton says. “That’s a really exciting prospect because we can now expect to [measure] many more [eruptions] from space” Changes in tremors caused by the eruption were recorded by a seismic station on the island and paralleled the researchers’ results. As sulfur dioxide emissions and plume height began to grow in the minutes before the blast, tremors increased, too. This work shows that it’s now possible to measure gas emissions preceding small eruptions using satellites, which will complement ground-based systems and help provide warnings before eruptions, says, Jorge Andres Diaz a volcanologist at the University of Costa Rica in San Pedro, who was not involved in the study. “It [could] be your first line of monitoring, especially in places that are very remote.” But predicting eruptions involves looking at multiple factors together, including those that TROPOMI can’t detect, he says. Tremors are one example (SN: 6/17/19). It’s also useful to monitor other emitted gases like carbon dioxide that, in conjunction with sulfur dioxide measurements, can reveal when new magma flushes into a volcano’s magma chamber, which can lead to an eruption. While TROPOMI can’t detect carbon dioxide, some other satellites can. “I don’t want to say we can forecast explosions perfectly; we can’t do that,” Burton says. “But this is a key step. It opens up a whole new frontier.” source: https://www.sciencenews.org/article/volcano-deadly-2019-eruption-new-zealand-satellite-data-monitoring
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.

Disable-Adblock.png

 

If you enjoy our contents, support us by Disable ads Blocker or add GIS-area to your ads blocker whitelist