Jump to content

Leaderboard


Popular Content

Showing content with the highest reputation since 12/22/2019 in all areas

  1. 2 points
    January 3, 2020 - Recent Landsat 8 Safehold Update On December 19, 2019 at approximately 12:23 UTC, Landsat 8 experienced a spacecraft constraint which triggered entry into a Safehold. The Landsat 8 Flight Operations Team recovered the satellite from the event on December 20, 2019 (DOY 354). The spacecraft resumed nominal on-orbit operations and ground station processing on December 22, 2019 (DOY 356). Data acquired between December 22, 2019 (DOY 356) and December 31, 2019 (DOY 365) exhibit some increased radiometric striping and minor geometric distortions (see image below) in addition to the normal Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) alignment offset apparent in Real-Time tier data. Acquisitions after December 31, 2019 (DOY 365) are consistent with pre-Safehold Real-Time tier data and are suitable for remote sensing use where applicable. All acquisitions after December 22, 2019 (DOY 356) will be reprocessed to meet typical Landsat data quality standards after the next TIRS Scene Select Mirror (SSM) calibration event, scheduled for January 11, 2020. Landsat 8 Operational Land Imager acquisition on December 22, 2019 (path 148/row 044) after the spacecraft resumed nominal on-orbit operations and ground station processing. This acquisition demonstrates increased radiometric striping and minor geometric distortions observed in all data acquired between December 22, 2019 and December 31, 2019. All acquisitions after December 22, 2019 will be reprocessed on January 11, 2020 to achieve typical Landsat data quality standards. Data not acquired during the Safehold event are listed below and displayed in purple on the map (click to enlarge). Map displaying Landsat 8 scenes not acquired from Dec 19-22, 2019 Path 207 Rows 160-161 Path 223 Rows 60-178 Path 6 Rows 22-122 Path 22 Rows 18-122 Path 38 Rows 18-122 Path 54 Rows 18-214 Path 70 Rows 18-120 Path 86 Rows 24-110 Path 102 Rows 19-122 Path 118 Rows 18-185 Path 134 Rows 18-133 Path 150 Rows 18-133 Path 166 Rows 18-222 Path 182 Rows 18-131 Path 198 Rows 18-122 Path 214 Rows 34-122 Path 230 Rows 54-179 Path 13 Rows 18-122 Path 29 Rows 20-232 Path 45 Rows 18-133 After recovering from the Safehold successfully, data acquired on December 20, 2019 (DOY 354) and from most of the day on December 21, 2019 (DOY 355) were ingested into the USGS Landsat Archive and marked as "Engineering". These data are still being assessed to determine if they will be made available for download to users through all USGS Landsat data portals. source: https://www.usgs.gov/land-resources/nli/landsat/january-3-2020-recent-landsat-8-safehold-update
  2. 1 point
    Interesting video on How Tos: WebOpenDroneMap is a friendly Graphical User Interfase (GUI) of OpenDroneMap. It enhances the capabilities of OpenDroneMap by providing a easy tool for processing drone imagery with bottoms, process status bars, and a new way to store images. WebODM allows to work by projects, so the user can create different projects and process the related images. As a whole, WebODM in Windows is a implementation of PostgresSQL, Node, Django and OpenDroneMap and Docker. The software instalation requires 6gb of disk space plus Docker. It seem huge but it is the only way to process drone imagery in Windows using just open source software. We definitely see a huge potential of WebODM for the image processing, therefore we have done this tutorial for the installation and we will post more tutorial for the application of WebODM with drone images. For this tutorial you need Docker Toolbox installed on your computer. You can follow this tutorial to get Docker on your pc: https://www.hatarilabs.com/ih-en/tutorial-installing-docker You can visit the WebODM site on GitHub: https://github.com/OpenDroneMap/WebODM Videos The tutorial was split in three short videos. Part 1 https://www.youtube.com/watch?v=AsMSoWAToxE Part 2 https://www.youtube.com/watch?v=8GKx3fz0qgE Part 3 https://www.youtube.com/watch?v=eCZFzaXyMmA
  3. 1 point
    This is a very interesting mapping platform for the agriculture community. The Belarus-based startup platform uses Sentinel-2 data and AI to instantly delineate thousands of crop fields and status of 20 plus crops in USA and Europe. They also have smartphone-based apps which you can use to find these solutions for your field as well. The platform applies Machine Learning, which constantly improves the service as more data and feedback is collected. Considering that a mind-boggling 376,835,301 hectares of fields across Europe and the USA have already been analyzed and catalogued, the system has reached a remarkable level of maturity. OneSoil — a Copernicus-enabled start-up from Belarus Check out their interactive map. Onesoil homepage
×
×
  • Create New...

Important Information

By using this site, you agree to our Terms of Use.